62 research outputs found

    Antibacterial Efficacy of Two Commercially Available Bacteriophage Formulations, Staphylococcal Bacteriophage and PYO Bacteriophage, Against Methicillin-Resistant Staphylococcus aureus: Prevention and Eradication of Biofilm Formation and Control of a Systemic Infection of Galleria mellonella Larvae

    Get PDF
    Sessile bacteria growing on surfaces are more resistant to standard antibiotics than their planktonic counterpart. Due to their antimicrobial properties, bacteriophages have re-emerged as a promising approach to treat bacterial biofilm-associated infections. Here, we evaluated the ability of two commercially available phage formulations, Staphylococcal bacteriophage (containing the monophage Sb-1) and PYO bacteriophage (a polyphage), in preventing and eradicating an in vitro biofilm of methicillin-resistant Staphylococcus aureus (MRSA) by isothermal microcalorimetry and high-resolution confocal laser scanning microscopy (CLSM). Moreover, to assess the potential in vivo efficacy of both phage preparations, a Galleria mellonella model of MRSA systemic infection was used. Microcalorimetry measurement showed that 107 PFU/ml (the highest tested titer) of both phage formulations were able to inhibit planktonic growth in a concentration-dependent manner. However, MRSA biofilm was eradicated only by co-incubation of 5-7 days with the highest phage titers, respectively. In the experiments of biofilm prevention, isothermal microcalorimetry revealed that the heat production was completely abolished in the presence of sub-inhibitory titers (104 PFU/ml) of phages. These data were also confirmed by confocal laser scanning microscopy. Both phage formulations increased the survival of G. mellonella larvae preventing or treating MRSA infection compared to untreated control. In conclusion, tested phage formulations are promising for preventing device colonization and killing biofilm bacteria attached on a surface. Novel strategies for direct coating and release of phages from material should be investigated

    Traffic Control and Quality of Service in Wireless LANs

    Get PDF
    The thesis deals with two aspects of the IEEE 802.11 standard. The first is the so-called “performance anomaly”: the variable bandwidth of the links and the use of multiple transmission rates push the throughput of all stations to align to the slowest one. To tackle this problem we designed and developed a simple channel-aware scheduling algorithm, called DTT, which actualises the proportional fairness concept, thus leading to noteworthy improvements, and in particular to flow isolation. This is achieved by measuring link quality as the time needed to deliver a frame. The resource to share is no longer capacity, but the time the channel is in use. DTT has then been integrated into a prototype Access Point, which is the first working implementation of a scheduler based on proportional fairness. Secondly, we focused on 802.11e networks, which, though enhancing QoS support, still offer scarce reliability of QoS guarantees and suffer from network congestion. We devised two admission control algorithms to assess the maximum number of users allowable to the services while satisfying QoS requirements. Following the studies on DTT, both algorithms centre the admission test on the time occupancy of the medium. The first algorithm builds on an analytical model of the EDCA mode in non-saturation conditions. This closely matches the real behaviour of a network carrying time-sensitive applications, thus overcoming the limits of all previous works, based on saturation models. The second algorithm uses and extends to 802.11e the NUC, a parameter defined and proved effective for 802.11b systems. This scheme needs measures of the actual state of the network. Simulations run within the E-model framework show good accuracy performance for both models

    Experimental Evaluation of a SIP-Based Home Gateway with Multiple Wireless Interfaces for Domotics Systems

    Get PDF
    In modern houses, the presence of sensors and actuators is increasing, whilecommunication servicesandentertainment systemshad long since settled into everyday life. The utilization of wireless communication technologies, such as ZigBee, Wi-Fi, and Bluetooth, is attractive because of their short installation times and low costs. The research is moving towards the integration of the various home appliances and devices into a single domotics system, able to exploit the cooperation among the diverse subsystems and offer the end-user a single multiservice platform. In this scenario, the paper presents the experimental evaluation of a domotics framework centered on a SIP-based home gateway (SHG). While SIP is used to build a common control plane, the SHG is in charge of translating the user commands from and to the specific domotics languages. The analysis has been devoted to assess both the performance of the SHG software framework and the negative effects produced by the simultaneous interference among the three widespread wireless technologies

    The impact of the access point power model on the energy-efficient management of infrastructured wireless LANs

    Get PDF
    The reduction of the energy footprint of large and mid-sized IEEE 802.11 access networks is gaining momentum. When operating at the network management level, the availability of an accurate power model of the APs becomes of paramount importance, because different detail levels have a non-negligible impact on the performance of the optimisation algorithms. The literature is plentiful of AP power models, and choosing the right one is not an easy task. In this paper we report the outcome of a thorough study on the impact that various inflections of the AP power model have when minimising the energy consumption of the infrastructure side of an enterprise wireless LAN. Our study, performed on several network scenarios and for various device energy profiles, reveals that simple one- and two-component models can provide excellent results in practically all cases. Conversely, employing accurate and detailed power models rarely offers substantial advantages in terms of power reduction, but, on the other hand, makes the solving algorithms much slower to execute

    Robust optimisation of green wireless LANs under rate uncertainty and user mobility

    Get PDF
    We present a robust optimisation approach to energy savings in wireless local area networks, that incorporates both link capacity fluctuations and user mobility under Bertsimas and Sim's robust optimization paradigm. Preliminary computational results are discussed

    An Experimental Cross-Layer Approach to Improve the Vertical Handover Procedure in Heterogeneous Wireless Networks

    Get PDF
    Users of next generation wireless devices will be likely to move across a heterogeneous network environment. This will give them the possibility to always exploit the best connection to the global Internet. In order to keep a seamless connection, the handover between different access technologies, also known as vertical handover, must be as smooth as possible. The current evolution of network architectures toward an all-IP core favours the use of the Mobile IPv6 protocol to handle such handovers. However, this protocol still presents several drawbacks, mainly related to the assumption of static devices and wired connections. Hence we have designed and implemented a software module that exploits information from the lower layers (e.g. physical) to extend the capabilities of Mobile IPv6 to wireless environments. We have then evaluated both the plain Mobile IPv6 and our proposed implementation over an experimental testbed. The outcome of the assessment proves the effectiveness of our solution and reveals the possibility to perform a seamless vertical handover in heterogeneous wireless networks

    Optimal Access Point Power Management for Green IEEE 802.11 Networks

    Get PDF
    In this paper, we present an approach and an algorithm aimed at minimising the energy consumption of enterprise Wireless Local Area Networks (WLANs) during periods of low user activity. We act on two network management aspects: powering off some Access Points (APs), and choosing the level of transmission power of each AP. An efficient technique to allocate the user terminals to the various APs is the key to achieving this goal. The approach has been formulated as an integer programming problem with nonlinear constraints, which comes from a general but accurate characterisation of the WLAN. This general problem formulation has two implications: the formulation is widely applicable, but the nonlinearity makes it NP-hard. To solve this problem to optimality, we devised an exact algorithm based on a customised version of Benders’ decomposition method. The computational results proved the ability to obtain remarkable power savings. In addition, the good performance of our algorithm in terms of solving times paves the way for its future deployment in real WLANs.publishedVersio

    A branch-and-Benders-cut method for nonlinear power design in green wireless local area networks

    Get PDF
    We consider a problem arising in the design of green wireless local area networks. Decisions on powering-on a set of access points (APs), via the assignment of one power level (PL) to each opened AP, and decisions on the assignment of the user terminals (UTs) to the opened APs, have to be taken simultaneously. The PL assigned to an AP affects, in a nonlinear way, the capacity of the connections between the AP and the UTs that are assigned to it. The objective is to minimize the overall power consumption of the APs, which has two components: location/capacity dimensioning costs of the APs; assignment costs that depend on the total demands assigned to the APs. We develop a branch-and-Benders-cut (BBC) method where, in a non-standard fashion, the master problem includes the variables of the Benders subproblem, but relaxes their integrality. The BBC method has been tested on a large set of instances, and compared to a Benders decomposition algorithm on a subset of instances without assignment costs, where the two approaches can be compared. The computational results show the superiority of BBC in terms of solution quality, scalability and robustness

    The N-Terminus of Human Lactoferrin Displays Anti-biofilm Activity on Candida parapsilosis in Lumen Catheters

    Get PDF
    Candida parapsilosis is a major cause of hospital-acquired infection, often related to parenteral nutrition administered via catheters and hand colonization of health care workers, and its peculiar biofilm formation ability on plastic surfaces. The mortality rate of 30% points to the pressing need for new antifungal drugs. The present study aimed at analyzing the inhibitory activity of the N-terminal lactoferrin-derived peptide, further referred to as hLF 1-11, against biofilms produced by clinical isolates of C. parapsilosis characterized for their biofilm forming ability and fluconazole susceptibility. hLF 1-11 anti-biofilm activity was assessed in terms of reduction of biofilm biomass, metabolic activity, and observation of sessile cell morphology on polystyrene microtiter plates and using an in vitro model of catheter-associated C. parapsilosis biofilm production. Moreover, fluctuation in transcription levels of genes related to cell adhesion, hyphal development and extracellular matrix production upon peptide exposure were evaluated by quantitative real time RT-PCR. The results revealed that hLF 1-11 exhibits an inhibitory effect on biofilm formation by all the C. parapsilosis isolates tested, in a dose-dependent manner, regardless of their fluconazole susceptibility. In addition, hLF 1-11 induced a statistically significant dose-dependent reduction of preformed-biofilm cellular density and metabolic activity at high peptide concentrations only. Interestingly, when assessed in a catheter lumen, hLF 1-11 was able to induce a 2-log reduction of sessile cell viability at both the peptide concentrations used in RPMI diluted in NaPB. A more pronounced anti-biofilm effect was observed (3.5-log reduction) when a 10% glucose solution was used as experimental condition on both early and preformed C. parapsilosis biofilm. Quantitative real time RT-PCR experiments confirmed that hLF 1-11 down-regulates key biofilm related genes. The overall findings suggest hLF 1-11 as a promising candidate for the prevention of C. parapsilosis biofilm formation and to treatment of mature catheter-related C. parapsilosis biofilm formation

    Antennas and photovoltaic panels: Toward a green Internet of Things

    Get PDF
    The perspective of a wide use of green power motivates the scientific community to study the possibility of fabricating integrated stand-alone devices. In particular, solar energy is one of the most promising renewable powers, and it is widely used in autonomous wireless communication systems. Specifically, integration of sensors and antennas in a solar panel represents a challenge for future technology. In this paper, the feasibility of a single integrated autonomous device equipped with WiFi capability is analyzed, discussing its potentiality in the framework of the Internet of Things
    corecore